- 1. Why must budget constraints be binding?
 - A. We do not model savings so we would never save
 - B. We maximize utility and more goods bought = more utility
 - C. Money has no value
 - D. Money loses value so it will be worth less tomorrow
- 2. Find the utility maximizing amount of each good for the following utility functions subject to budgets $M = P_x X + P_y Y$:
 - (a) $U(x,y) = x^{1/2}y^{1/2}$ s.t. 120 = 4x + y
 - (b) $U(x,y) = \alpha ln(x) + y$ s.t. $M = P_x x + P_y y$
 - (c) $U(x,y) = min\{2x,y\}$ s.t. 16 = 2x + y
 - (d) U(x,y) = 4x + 5y s.t. 10 = 2x + 3y

Solution:
(a)
$$x^* = \frac{1}{2} \cdot \frac{120}{4} = 15$$
 & $y^* = \frac{1}{2} \cdot \frac{120}{1} = 60$
(b) $x^* = \frac{\alpha}{x} = \frac{4}{1} \to 4x = \alpha \to x^* = \frac{\alpha}{4}$ & $120 = 4\left(\frac{\alpha}{4}\right) + y \to y^* = 120 - \alpha$
(c) $2x = y \to 16 = 2 \cdot x + 2x \to x^* = 4$ & $y^* = 2(4) = 8$
(d) $MRS = \frac{P_x}{P_y} \to \frac{4}{5} = \frac{2}{3} \to MRS > Price Ratio \to y^* = 0 \to x^* = 5$

- 3. Draw a utility maximizing Indifference Curve subject to an arbitrary budget for the following function types:
 - (a) Cobb-Douglas
 - (b) Quasi-linear
 - (c) Perfect Complements
 - (d) Perfect Substitutes (Show both possible corner solutions)

